Chapter 16

Origin of species

What is a species?

- · Biological species concept (Mayr)
 - A species is a group of populations whose individuals interbreed with each other (or at least are <u>capable</u> of interbreeding), but not with members of other such groups.
 - ➤Interbreeding: Includes both mating and production of fertile offspring

❖Problems with definition:

- Can't always tell whether members of different groups can/do interbreed.
- > Doesn't help define species that reproduce asexually (i.e. bacteria)

How do new species form?

- For speciation to occur for a pair of populations, two factors are necessary:
 - ❖Isolation of populations ➤No gene flow between them!
 - ❖Genetic divergence of populations
 - > Become different enough genetically that they could no longer interbreed/produce vigorous, fertile offspring if reunited

Allopatric speciation

- Geographic isolation
 Impassible physical barrier
- Genetic divergence
 - ❖Natural selection
 - ❖Genetic drift❖Founder effect
- Reproductive isolation
 - Due to accumulated genetic

A case of allopatric speciation?

- Kaibab squirrel and Abert squirrel live on opposite rims of the Grand Canyon.
 - Are they really different species?
 Molecular data says they're really subspecies.

Allopatric speciation

- Known example
 - Herring gulls (UK) & lesser blackbacked gulls (Continental Europe)
 - ❖No longer interbreed, even when the two species meet.

Sympatric speciation

- · Ecological isolation ❖ Distinct niches
- Genetic divergence
 - ❖Natural selection (best-fit to niche)
 - Assortative mating
- Reproductive isolation
 - ❖ Due to accumulated genetic differences

A case of sympatric speciation?

- Apple-flies and hawthorn-flies (genus Rhagoletis) show assortative mating.
 - Are they really different species?
 - ❖Molecular data indicates that they are speciation in process since 1800 (incipient speciation).

Changes in chromosome number lead to sympatric speciation

- · Specific to plants
- · Plants can double their chromosome number and become new species.
 - Plant breeders take advantage of this using colchicine.
 - colchicine causes plants to double their chromosome number.

Adaptive radiation

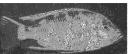
- · Many species may evolve from an ancestral species over a short period of time.
- · Can occur if a species moves into an area with a variety of unoccupied niches with differing selective pressures.
 - ❖Example 1: Darwin's finches (Galapagos)
 - ❖Example 2: Over 300 species of cichlid fish in lake Malawi
 - ➤In both examples, species differences reflect adaptations to different food resources.

Adaptive radiation is often seen in islands

- · Islands, due to natural disasters like volcanoes and hurricanes, are often "cleared" of species.
 - Species from nearby mainlands arrive
 - ❖Speciate to fill empty niches on islands.

Adaptive radiation: Darwin's finches (Galapagos)

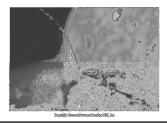
- Beak size and shape were related to food type
- Other aspects were similar, suggesting the birds were related
- Explanation
 - Ancestral species arrived in the Galapagos.
 - Unoccupied niches were exploited
 - Sympatric speciation occurred.



Adaptive radiation:

Cichlid fishes (Lake Malawi)

- These are three of over 300 cichlid species!
- Body shape, mouth size and coloration reflect differences in feeding strategies and habitat
- Explanation:
 - Ancestral species arrived at the lake
 - Unoccupied niches were exploited
 - Sympatric speciation occurred.



Maintenance of reproductive isolation

- · Pre-mating isolation
 - ❖Geographic isolation
 - >Geographic barriers prevent mating.
 - ❖Ecological isolation
 - > Ecological barriers prevent mating
 - ❖Temporal isolation
 - > Different species mate at different times of the year.
 - ❖Behavioral isolation
 - > Different species use different courtship signals
 - Physiological barriers
 - ➤ Different species don't fit.
 - ≻Known as a "lock & key" physiology.

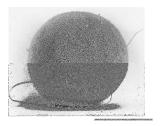
Maintenance of reproductive isolation

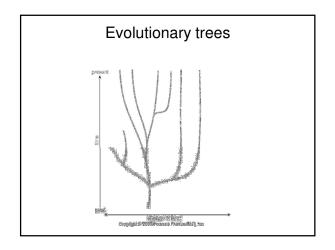
- · Pre-mating isolation
 - ❖Different habitats prevent cross-breeding
 - Example: Each species of fig wasps mates and lays eggs within a particular fig species.

Maintenance of reproductive isolation

- · Pre-mating isolation (cont.)
 - ❖ Different species breed at different times of year.
 - ➤ Example: Bishop pines (in photo) release pollen in the summer, while Monterey pines release pollen in the spring

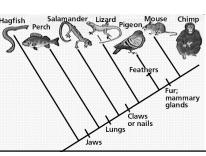
Maintenance of reproductive isolation

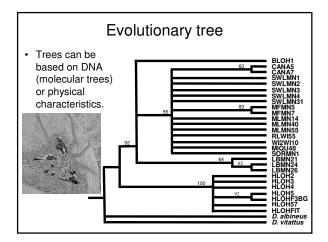

- · Pre-mating isolation (cont.)
 - ❖ Different species may have different reproductive organs.
 - > Example: Complex sex organs of insects such as damselflies
 - Very common in invertebrates.


Maintenance of reproductive isolation

- Post-mating isolation
 - ❖Sperm may fail to fertilize female's egg.

Maintenance of reproductive isolation


- Post-mating isolation (cont.)
 - Hybrid offspring may be poor survivors.
 - ➤ Particular genetic combination may give rise to intermediate characteristics not well-adapted to the environment.
 - Hybrid offspring may be infertile.
 - ➤ Classic example: Mules, crosses between horses and donkeys, are infertile.



Evolutionary trees

- Based on shared characteristics or DNA sequence data.
 - The more shared traits/DNA, the closer related the two species are.

Each node represents an evolutionary change in traits

Extinction

- Extinction is the death of all members of a species or subspecies.
- · Causes:
 - ❖Very limited habitats
 - ❖ Habitat change
 - Overpredation
 - Overhunting

Extinction

- · Great Auk
 - Breeding colonies once widespread through North Atlantic
 - Population fragmentation by hunting for food/bait
 - ♦ Scarcity → high-price trade in skins & eggs
 - Last auk: Iceland, 1844
 Breeding pair and egg destroyed

Extinction: Tasmanian wolf

- · Tasmanian Wolf
 - ❖Marsupial predator
 - Extinction caused by overhunting by sheep farmers

• Movie link

Extinction

- · Heath hen
 - Eastern species of prairie chicken.
 - Overhunting reduced population.
 - Catastrophic fire killed most of females and eggs.

Last male heath hen looking for a

Near Extinctions

- California Condors
 - Population reduced to 22 individuals.
 - > Causes include:
 - 1. Habitat fragmentation
 - Lead poisoning from eating hunting kills.
 - 3. poaching
 - Captive breeding and other conservation efforts have increased the population to 326 currently.

Near extinctions

- Przewalski's Horse or Takhi
 - Population reduced to 31 individuals.
 - ❖Near extinction due to:
 - ➤1. habitat loss: grasslands
 - >2. habitat fragmentation limited access to water.
 - Conservation efforts have increased population to 1,500 currently.

